
### Mineral Products Scope:

The mineral products sector in Northern Ireland covers the aggregates, asphalt, cement, concrete, dimension stone, lime, mortar and silica sand industries. The mineral products sector accounts for £650 million annually (quarrying itself representing approximately £400 million)<sup>1</sup>, 2.75% of the regional Northern Ireland economy (GDP)<sup>2</sup>, 1.75% of Northern Ireland's GVA, and contributes up to 23% of Northern Ireland's industrial carbon emissions.









### **Mineral Product Industry Carbon Intensive Operations**

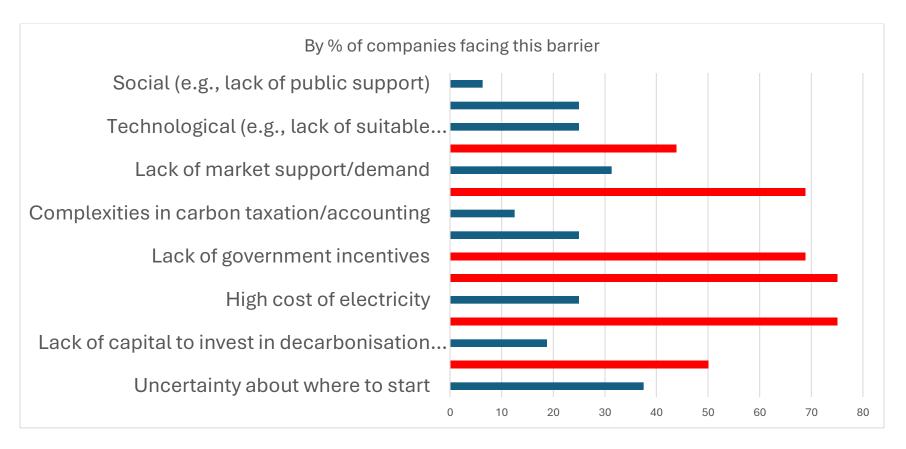
Cement and lime are the most carbon intensive (mineral product) operations, due to the high temperatures required to produce them, and the release of carbon dioxide from calcium carbonate raw materials at high temperatures. Matter can be removed using explosives (carbon monoxide emissions) and heavy machinery running on fossil fuels. Pulverisation of matter accounts for 40% of mining's energy use. Water used to separate minerals (treatment of water also requires significant energy usage).

### CONTEXT

Significant global change across energy sector

The objective of MPANI– Camirus engagement is to develop or consolidate a MPANI perspective to input into the ID-NI process and




- Transition to net zero
- Cost allocation; protectionism; customer attitudes
- Diversity of technology and policy options
- ID-NI project opportunity
  - consolidate funding/support requirements
  - focus discussion with energy sector
  - highlight and address energy issues inhibiting competitiveness
- Industry-led

#### **POSITION PAPER:**

- We anticipate ~60%-80% of industrial decarbonisation challenges will be common
- However, important we distinguish 20-40% per sector that are unique/particularly critical
- Important to put industrial and sector contribution and significance in context for national policymakers and funders (in London, Dublin and Brussels)
- We have time to iterate

### MPANI MEMBERS IDENTIFIED OBSTACLES TO DECARBONISATION







|   | Project funding                                                     | <b>Regional funds</b>                                                                                          | Energy regulation                                                                                                                                                                                                              | Taxation and incentives                                                       |
|---|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| • | Public<br>IETF<br>Innovation/UKRI<br>BEAS 2025+<br>UKIB<br>Hydrogen | <ul> <li>City Deals</li> <li>Investment Zone</li> <li>UKIB/Wealth Fund</li> <li>Shared Island Funds</li> </ul> | <ul> <li>Green (industrial)<br/>power pool</li> <li>Power purchase<br/>agreement</li> <li>Delink electricity and<br/>gas prices</li> <li>Socialise<br/>(connection) charges</li> <li>Regionalise<br/>infrastructure</li> </ul> | <ul> <li>CBAM</li> <li>Cap and trade (ETS)</li> <li>Ell Exemptions</li> </ul> |
| • | Solar/Wind<br>other                                                 |                                                                                                                | investment costs                                                                                                                                                                                                               |                                                                               |



# **Emissions-reduction related projects**

## **ENERGY EFFICICENY**

- Switch to energy-efficient machinery
- Several projects related to material efficiency, cement replacement, energy and water efficiency.
- Blower system for moving materials to different areas of site

# **CEMENT & CONCRETE**

- Working towards Cem 111 in specific products with ambitions to reach lower cement content over time
- Investing into R&D for lowcarbon product solutions
- Low carbon cements & electric company cars
- Using geopolymer concrete in a demonstration project

## FUEL-SWITCHING

- Alternative fuel including green hydrogen, SCM (supply chain management?)'s & CCUS projects
- Trials of low carbon fuels, renewables at sites, <u>Breedon</u> Balance eco products,
- Alternative fuel substitution with solid recovered fuel (SRF), lean (OpEx) programme



Invest Northern

Ireland

 Considering ground-mount Solar PV

IDNI

- Planning for a PV solar installation
  - Actively installing renewable energy technology and EV chargers.



Potential technologies or solutions for emissions reduction



| Technology or<br>approach               | Lechnology Maturity Economic Considerations                                                           |                                                                                                                                            | Magnitude/significance of tech<br>(proportion of emissions)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recycling of product<br>materials       | Process/en<br>d-use                                                                                   | Mature – primary,<br>secondary and<br>aggregates                                                                                           | Processing of waste materials<br>can be energy and labour<br>intensive – better to plan<br>ahead to create materials that<br>will again meet technical<br>specifications                                                                                                                                 | Small potential.<br>Use of recycled (construction and<br>demolition) waste and by-products of other<br>industries (secondary) is a small part of<br>reducing overall emissions.<br>Britain: 75% of waste actively reprocessed<br>and re-used. 90% of 'hard' construction<br>waste recycled as aggregate <sup>5</sup> (the largest<br>waste stream in the economy). |
| Onsite Renewable<br>Generation          | Indirect<br>emissions,<br>logistics.                                                                  | Mature, attractive<br>technology. 1/3 of<br>land in NI owned by<br>M.P sector.                                                             | Northern Ireland Energy<br>Strategy 'Path to Net Zero<br>Energy' includes a target to<br>meet 70% of electricity<br>consumption from a diverse<br>mix of renewable sources by<br>2030 <sup>6</sup> .<br>Market for generating cheaper<br>electricity - very attractive<br>considering electricity prices | Medium/significant.<br>Potential to play a medium/significant part<br>in reducing emissions to direct emissions<br>from operations, indirect emissions and<br>logistics.                                                                                                                                                                                           |
| Fuel-switching:<br>Biomass and biofuels | Process<br>(potentially<br>sufficient to<br>generate<br>over 70% of<br>the heat<br>used for<br>cement | Early-stage<br>Not operational<br>commercially in UK.<br>Problems - CO <sup>2</sup><br>storage, biomass<br>harvests harming<br>ecosystems. | Substantial cost – not viable.<br>Potential for further market<br>distortions and unintended<br>impacts on the<br>decarbonisation of the UK<br>cement and lime<br>industries. This is poor value<br>for public money and a poor<br>outcome for the environment.                                          | Low potential.<br>Currently technologically and<br>environmentally <b>not viable</b> – but the<br>technology and projected generation of<br>heat has the <b>potential</b> to supply a large<br>proportion of heat required within sector.                                                                                                                          |



|                                                                 | production)                                                             |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel-switching:<br>Hydrogen                                     | Process<br>Needs to be<br>delivered or<br>produced<br>on-site.          | Early-stage<br>(despite the<br>technology itself<br>being old, no current<br>pathway to viably<br>implement or<br>rationalise its use)                                                                                                | Substantial cost:<br>/ requires substantial subsidy<br>as seen in international<br>applications<br>Lose 25% of energy in<br>electrolysis process.<br>Critically this converts it into<br>heat.<br>Must then be converted BACK<br>into electricity again for usage. | Medium potential.<br>Could address significant emissions (given<br>significant subsidy + infrastructure costs)<br>Applications: transportation & power.<br>Reduction in the use of fossil fuel in site<br>activities (Scope 1 emissions) and material<br>transportation (Scope 2 emissions)<br>Hanson Cement's Ribblesdale plant in<br>Lancashire received £3.2M funding<br>- cement kiln's main burner now net-zero <sup>7</sup> .<br>[NOTE – USING GREY HYDROGEN – no<br>CCUS]                                                                                                                                                                                                                                                            |
| Fuel-switching:<br>electrification <sup>8</sup> in<br>transport | Process and<br>direct<br>emissions<br>from<br>operations,<br>logistics. | Electric instead of<br>diesel vehicles (BEVS)<br>Large grid<br>investments required<br>Also potential for<br>electrification in the<br>form of plasma<br>energy <sup>9</sup> (for cement<br>sector) – BEIS Energy<br>Innovation Prog. | Electricity will also be required<br>to power other<br>decarbonisation technologies,<br>especially carbon capture (see<br>below).                                                                                                                                  | Medium-significant magnitude.<br>Long lead times for electricity grid network<br>updates. Potential to address direct,<br>indirect and logistics emissions.<br>Until recently, companies unable to make a<br>profit from electricity provided for mobility,<br>and the network has been run on a free-to<br>charge model that disincentives growth or<br>maintenance + a grid retains an unusual<br>charging system that discourages<br>innovation and new connections -In<br>Northern Ireland the connecting party is<br>expected to cover at least some of the cost<br>of those upgrades where their connection is<br>the tipping point that makes the upgrade<br>necessary (internationally, you pay just for<br>the connection itself). |



| CCUE (Carbon Cantura  | Process and | Mid in use worldwide   | CCUE will not just involve high    |                                                            |
|-----------------------|-------------|------------------------|------------------------------------|------------------------------------------------------------|
| CCUS (Carbon Capture, |             | Mid, in-use worldwide  | CCUS will not just involve high    |                                                            |
| Use and Storage)      | direct      | and projects popping   | capex costs but will also incur    | Significant potential to curb large process                |
|                       | emissions   | up.                    | considerable ongoing               | emissions?, direct emissions and indirect                  |
|                       | from        |                        | operational costs. CCUS            | emissions.                                                 |
|                       | operations  | Can be retro-fitted to | projects in the cement and         |                                                            |
|                       |             | existing plants.       | lime sectors indicate that         | Huge potential for cement industry in                      |
|                       |             |                        | deployment of carbon capture       | particular – final recommendations will be                 |
|                       |             | Significant, and       | could double the cost of           | decisive on CCUS for mineral products                      |
|                       |             | maybe the only         | production. If the                 | sector.                                                    |
|                       |             | option to reduce       | competitiveness of mineral         |                                                            |
|                       |             | emissions in cement    | products is to be maintained,      |                                                            |
|                       |             | industry.              | Government support must            |                                                            |
|                       |             |                        | continue beyond first of a kind    |                                                            |
|                       |             |                        | projects in clusters to projects   |                                                            |
|                       |             |                        | at dispersed sites <sup>10</sup> . |                                                            |
|                       | Process and | Early/mid              | There is significant potential     | Medium capacity potential – in FUTURE                      |
|                       | direct      | NI - favourable        | for the use of both shallow        | (needs R&D)                                                |
|                       | emissions   | geology with           | and deep geothermal energy         | GeoEnergy NI Project – June 2023 - £3                      |
| Geothermal Energy     | from        | significant untapped   | resources for the production       | million project from the Department for the                |
| Production            | operations  | potential for          | of heat, and possibly electrical   | Economy (DfE) is set to explore the                        |
|                       |             | geothermal energy.     | power, in Northern Ireland.        | potential for geothermal energy in                         |
|                       |             | Feasibility studies    | Extracting such heat creates       | Northern Ireland.                                          |
|                       |             | underway in NI         | steam that is used to drive        |                                                            |
|                       |             | (Belfast & Antrim).    | generators that create green       | (Already has early governmental support –                  |
|                       |             | , ,                    | electricity.                       | and successful in international                            |
|                       |             | Low emissions -        | ,                                  | applications <sup>11</sup> . Producing local, sustainable, |
|                       |             | Geothermal power       | Most geothermal power plants       | and low-carbon energy and is available 24                  |
|                       |             | plants do not burn     | inject the geothermal steam        | hours a day, 365 days a year, whatever the                 |
|                       |             | fuel to generate       | and water that they use back       | weather.) NZ application significant.                      |
|                       |             | electricity, but may   | into the earth. (Renew the         | Drawbacks: Development cost + time,                        |
|                       |             | release small amounts  | geothermal resource and to         | specialised maintenance, emissions <sup>12</sup> .         |
|                       |             | of sulfur dioxide and  | reduce emissions from the          |                                                            |
|                       |             | carbon dioxide (99%    | geothermal power plants)           |                                                            |
|                       |             |                        |                                    |                                                            |



|                             | Indirect  | less than FF pp).<br>Geothermal power<br>plants use scrubbers<br>to remove the<br>hydrogen sulfide<br>naturally found in<br>geothermal<br>reservoirs.<br>Very early.                                                                                                                                                                                                                                                                                                    | Current waste fines                                                                                                                                                                                                                                                                                                                                                  | Low significance.                                                                                                                                                                                                                                                                             |
|-----------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enhanced Rock<br>Weathering | emissions | Rain in atmosphere<br>combines with CO <sub>2</sub> to<br>form carbonic acid.<br>When this acid falls<br>on land, the<br>CO <sub>2</sub> interacts with<br>rocks and soil,<br>mineralises and is<br>stored in solid<br>carbonate form <sup>13</sup> .<br>ERW accelerates this<br>process by spreading<br>crushed silicate rock<br>on agricultural land,<br>increasing the surface<br>area of the rock and<br>therefore increasing<br>its contact with CO <sub>2</sub> . | production can partially fulfil<br>the short-term demand of<br>crushed rock for EW in the UK,<br>the production of basic silicate<br>rocks would need to increase<br>by ~ 30 - 170 to meet the<br>extraction scenarios.<br>Therefore ERW, would need to<br>be employed in conjunction<br>with other carbon-emissions<br>reduction technologies to<br>reach net zero. | Future strategy, R&D to be done.<br>Minerals crushed to a fine texture and<br>transported to their point of use.<br>Challenges: the high energy demands of<br>pulverizing rocks and understanding the full<br>impacts of adding silicates to soils and<br>oceans under real-world conditions. |

There are also multiple opportunities for mineral products to be used to capture and store carbon. These are valuable for overall reduction of society's carbon emissions but not directly relevant to industrial decarbonisation, so are not included here.



Where industrial decarbonisation (i.e., reduction in site carbon emissions) can be supported by growing markets for lower or zero carbon products (e.g., thinner or composite granite slabs) this is included as an approach and typically will be supported or accelerated by demand-side policy measures.

# Mineral Products Decarbonisation Roadmap (by Product)

| CO2 EMISSIONS BY<br>INTENSITY | IMMEDIATE                                                               | WITHIN 5YRS                                                                                           | WITHIN 8YRS                      | 10Y+                                                        |
|-------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| IME + DOLIME PRODUCTION       | Energy Efficiency<br>Measures (EEMs)                                    | Onsite and cluster renewables                                                                         | Hydrogen-fuel in<br>Kilns        | Lime CCUS and dolime<br>biomass investment                  |
| CEMENT PRODUCTION             |                                                                         | Decarb. electricity, trans<br>ement + concrete, carbo                                                 |                                  | Fuel-switching (biomass,<br>hydrogen) & CCUS                |
| ASPHALT PRODUCTION            | <b>EEMs +</b> waste utilisation/minimalisation                          | Decrease logistics<br>emissions (transport)                                                           | Replace/upgrade<br>older burners | Fuel-switching e.g<br>Hydrogen                              |
| CRUSHED ROCK PROD.            | <b>EEMs -</b> switch to LEDs, 'right-s<br>equipment to limit energy was |                                                                                                       |                                  | ce hauling of material from<br>nt to project / rail-service |
| SAND AND GRAVEL               | <b>EEMS</b> e.g Variable Frequency<br>Drives (VFDs), water manageme     |                                                                                                       |                                  |                                                             |
| READY-MIX CONCRETE (RMC)      | EEMs & Logistic Emissions -                                             | Dispatching of RMC (34%)<br><s %),="" (17.44="" an<="" setup="" slump="" td=""><td></td><td></td></s> |                                  |                                                             |

