Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Stephen Kelly Manufacturing NI

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Minister Caoimhe Archibald MLA Department for the Economy

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Alan McKeown Invest Northern Ireland

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

ID-NI Initiative Update

Wednesday 19th February

Glenavon Hotel, Cookstown

Invest Northern Ireland

Eugene Heaney Invest Northern Ireland

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Industrial Decarbonisation for Northern Ireland

- Why we did it?
- How we did it?
- What was said?
- What did we deliver?
- What could be achieved?

IDNI – Why we did it?

The cheapest energy is the energy you don't use in the first place.

UK Research and Innovation

Climate Change Act (Northern Ireland) 2022

Northern Ireland Executive Draft Green Growth Strategy for Northern Ireland

How we did it?

Fermanagh & Omagh

How we did it?

How we did it?

What was said?

What are the drivers for you to decarbonise your business today?

What is driving you to decarbonise your business today?									
Cost of energy									
92%									
Regulation									
50%									
Access to low carbon infrastructure									
42%									
Cost of raw materials									
33%									
Grid connection									
33%									
Supply Chain									
25%									

What could this Council or NI Executive do to help you with these challenges today?

What could this council, or NI Executive, do to help you with these challenges

Funding
71%
Grid connection
50%
Advice/Guidance
50%
Speed of upgrade
36%
Low carbon infrastructure
36%
Cost of connection
29%
Policy direction

Knowledge Sharing Platform (KSP)

Home Who We Are VID Hub VIEws Events Funding

Industrial Decarbonisation for Northern Ireland

Revolutionising carbon reduction efforts in Northern Ireland, our innovative dual approach of combining energy efficiency and productivity, IDNI will provide businesses with customised support, expert guidance, essential tools, and measurable metrics. By enabling NI industries to collaborate we will simultaneously reduce emissions and boost productivity, thereby paving the way towards a more decarbonised and competitive future.

What did we deliver? Productivity Emissions Tool (PET)

Productivity Factors Year		Value	Per Employee Cost				
Turnover		4,811,388.00					
Number	Of Employees	91					
Annual Output (total units sold)		64,262.00	Products				
>	Cost of Energy	238,275	2,618				
>	Cost of Raw Materials	1,167,277	12,827				
>	Cost of Bought in Goods - Consumables and bought in parts	214,386	2,356				
>	Water Usage	25,326	278				
>	Waste	8,955	98				
>	Road Freight	147,689	1,623				
>	Other Freight	0					
>	Company Travel	81,426	895				
>	Other External Costs (Legal, rental, accounting etc)	85,620	941				
Total External Cost		1968954					
Productivity Score		31,235.54					
ONS Productivity Comparison		25th Percentile					
Innovation - % of Turnover from Products <3 years		30%	1,443,416				
Training - % of Staff in Training (On the Job, PT-FE, Prof'snl or Post Grad)		0%					
Export - % of Turnover from Export		71%	3,416,085				

🖹 Save

What did we deliver? Productivity Emissions Tool (PET)

Average daily consumption, kWh per half hour

-O- Monday -O- Tuesday -O- Wednesday -O- Thursday -O- Friday -O- Saturday -O- Sunday

8

What did we deliver? IDNI Mapping Resource

What did we deliver? IDNI Mapping Resource

IDNI Mapping Resource

NIEN clustered substations

IDNI Clusters and Communities of Shared Interest (COSI) Identified

IDNI Clusters and COSI Members

What did we deliver? IDNI Clusters and COSI Members

IDNI Clusters and COSI Members

Granville Site Recommendations												
Company ID	Rec. Title	kWh/yr	£/yr		tCO2e/yr	Co	st	Payback				
1006	Biogas	-	£	-	2192.5	-		0.0				
1011	HVO	-	£	-	1190	-		0.0				
1005	Repair Air Leaks	41,300	£	15,100.00	6.5	£	2,000.00	0.1				
1007	aM&T System	160,000	£	32,000.00	36	£	40,000.00	1.3				
1005	LED Lighting	780	£	280.00	0.2	£	400.00	1.4				
1008	Shut-off Valves	31,200	£	6,200.00	7	£	10,000.00	1.6				
1005	VSD Compressor	81,300	£	36,900.00	22.7	£	60,000.00	1.6				
1006	aM&T System	112,000	£	17,900.00	28	£	40,000.00	2.2				
1010	PIRSensors	2,300	£	600.00	0.5	£	1,500.00	2.5				
1008	Sub-surface Aeration	346,000	£	69,000.00	78	£	230,000.00	3.3				
1005	aM&T System	17,900	£	3,600.00	4	£	15,000.00	4.2				
1007	Inverter Drives	23,500	£	4,700.00	5.3	£	20,000.00	4.3				
1007	Solar PV	370,100	£	74,000.00	83.3	£	473,000.00	6.4				
1011	Battery	151,000	£	30,000.00	34	£	200,000.00	6.7				
1009	Solar PV	53,900	£	11,100.00	12	£	83,000.00	7.5				
1008	Solar PV [332.5kW]	170,000	£	34,000.00	38	£	266,000.00	7.8				
1006	Solar PV	550,000	£	88,000.00	125	£	690,000.00	7.8				
1008	Solar PV [100kW]	49,900	£	10,000.00	11.2	£	80,000.00	8.0				
1010	Solar PV	26,577	£	6,800.00	6	£	55,000.00	8.1				
1012	Solar PV Array	350,000	£	72,600.00	78.7	£	607,000.00	8.4				
		2,537,757	£	512,780.00	£ 3,958.90	£ 2	2,872,900.00	-				

Cluster Opportunities – General Principles

- Excess electricity production
- Waste heat
- Recover energy from waste products

1 + 1 > 2

- Economies of scale
- Leverage capability
- Load management
- Grid constraints

IDNI Clusters and COSI Members

IDNI Clusters and COSI Members

Collective Solar PV Array:

- Saving 5,781,000 kWh Per Yr
- 1,300 tCO2e,
- 8.4year pay-back period

UK Research

and Innovation

Collective 2.7 MWp AD Plant W/ChP (Animal Waste):

- Saving 4,500,000 kWh Per **Yr** – **Electricity**
- Saving 5,700,000 Kwh Per Yr - Heat
- 2,055 Combined tCO2e,
- INDUSTRIAL 6.5 year pay-back period

- Savings of approx. £160,000 on standard HVO price by pooling
- purchasing power
- 1192 tCO2e,

• Saving 10,640,000 kWh Per Yr,

Collective Wind

Farm:

- 2,394 tCO2e,
- 4.3year pay-back period

Granville Cluster Annual Carbon Footprint

No Action Cluster Action

Granville Cluster Annual Carbon Savings Potential (tCO2e)

Additional Cluster Opportunities

H₂ Hydrogen H₂

Virtual power purchase agreements

Coolkeeragh Cluster

SOURCES OF

BIOMASS

ANIMAL RESIDUE

INDUSTRIAL

RESIDUES

AGRICULTURAL CROPS AND RESIDUES

Carn & Seagoe

SEWAGE

Knockmore

Cluster

Toomebridge Cluster

UK Research and Innovation

Knockmore Cluster energy modelling?

Possible Savings

JK Research

and Innovation

INDUSTRIAL

Knockmore cluster – 53.85% Nett Load or **46.15% reduction** in Energy use if acting as a cluster

Knockmore cluster – 76.5% Nett Load or **23.5% reduction** in Energy use if acting individually

IDNI Combined Clusters Annual Carbon Savings Potential (tCO2e)

What did we deliver? IDNI COSI Members

IDNI COSI Members

IDNI Clusters and COSI Members

IDNI Combined Clusters Monetary Savings Potential

IDNI Combined Clusters Annual Carbon Savings Potential (tC02e)

IDNI Clusters and COSI Members

Carbon Savings 69,040 tCO2e

Monetary Savings £27,182,102

Key Take Aways?

26.4% GhG reductions since 1990 -48% 2030 Target

A 25.6% reduction in GhG

3 C's Clustering, Collaboration and Community is the key

Matthew Rhodes Camirus

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

IDNI: How and why to stay involved

Insights Event

February 2025

The challenge is maintaining competitiveness in a changing world

- NI electricity costs are already holding back industry competitiveness*
- NIEN will invest ~£2bn+ of billpayer's money in network enhancement**
- This investment needs to be targeted and efficient
- How to do this?

* Energy is 2-10% of a typical manufacturing business' total costs. This means any company locating in the US immediately makes 1.5-7.5% more profit compared to locating in NI.

sustainable solutions

** These are the costs of increased electricity network capacity; hydrogen or carbon capture assets, even *before costs of companies investing in new equipment to cope with new fuels.*

Northern Ireland has the opportunity to learn from successful global experiences

• Devolved powers over energy and transport

- Cooperative industrial culture and family firms
- Global digital hub

lamirus

- Relatively good renewable resources (biomethane, wind, Irish Sea)
- Integrity of institutions (energy, political, economic bodies all have the same boundaries)

- Austrian energy communities model
- Geographical clustering and sharing of expertise between trade associations and industry groups (e.g., Basque cluster)
- An industrial voice to balance the energy (investor) megaphone and networks super-tanker
 - Infrastructure
 - Regulation
 - Carbon taxation (accounting)
 - Funding subsidy and business models

Not topics most NI companies are eager or set up to engage in

Good projects will hit unnecessary barriers and delays without help

- Planning delays
- No capacity or specialist resources to develop projects
 - Companies don't know energy market or technologies; energy people don't know industrial sectors
 - Fuel switching or operational changes have biggest carbon and cost benefit but greatest business risk
- Perceived (or actual) innovation risk
- Unfamiliar and complex business models and intermediaries. Lack of trust.
- Complex energy regulations and market structures; who to deal with
- No whole economy, whole cluster and whole energy system view

DN

Ulster

University

sustainable solutions

IDNI has created the foundations and mechanisms to help create this voice

- Communities of shared interest (COSIs)
 - Geographical clusters
 - Whole NI Sectors
- Web tools via Knowledge-sharing platform (KSP
 - Energy and carbon planning
 - Productivity and Emissions Tool (PET)
- Advisory Board
 - Bringing networks and industry together in constructive dialogue
 - Possible first step towards industrial energy agency

he Economic

llster

We have also looked globally

- The Austrians have encouraged investment in local renewables by allowing companies to sell power to their neighbours with lower network costs and system levies
- This reflects physical and commercial realities
- It doesn't have a noticeable impact on non-participating consumer bills

Pro En

Sector-specific evidence is powerful for policy and should be useful to companies too

Immediate next steps

- Form your own cluster or COSI
- Register on Knowledge Platform; look at tools; have an audit to populate them
- Get involved via clusters bid(s)
- See demo on Camirus/Pro Enviro stand

ID- NI Initiative Update Q&A

Eugene Heaney

Invest NI

Matthew Rhodes

Camirus

Northern Ireland Industry IDNI Experience

Wednesday 19th February

Glenavon Hotel, Cookstown

Invest Northern Ireland

Northern Ireland Industry IDNI Experience

Panel Session

Roisin McCabe

Hannah Miskimmon

Specdrum

Northstone

John Kennedy

Creagh Concrete

Global Best Practices in Industrial Decarbonisation

Wednesday 19th February

Glenavon Hotel, Cookstown

Invest Northern Ireland

Eugene Heaney Invest Northern Ireland

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Glenavon Hotel, Cookstown

Catherine McHale ESB

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Glenavon Hotel, Cookstown

Invested in Net Zero

Renewables

where the second state of the second

Zero Carbon Dispatchable Power Generation

Hydrogen

Sub Sea Storage

Delivering Hydrogen & Storage

ESB is now an established leader of Hydrogen in Ireland, influential in policy and delivering credible projects

- Policy influence
- Kestrel storage
- Lighthouse Project
- Proof of Concepts

Initial investment in the UK will provide momentum for our Hydrogen ambitions

- Acquisitions
- Carrington Conversion
- Hydrogen Backbone
- Hydrogen to Power

Delivering Energy Hubs enables OSW, Hydrogen Storage and Zero Carbon Dispatchable Generation

- GreenAtlantic@Monyepoint
- GreenEnergy@Cork
- HyNet (Carrington)
- Foyle Hub
- Dublin Hub

Delivering Net-Zero – Hydrogen, Ammonia and Long Term Storage

HyNet North West

Delivering on Clean Power 2030 and Enabling re-industrialisation

hynet.co.uk

HyNet Infrastructure

- → CO₂ transport and storage facilities
- → Facilities to capture CO₂ emissions
- → Low-carbon
 hydrogen
 production
- → A hydrogen pipeline network and salt caverns in which hydrogen can be stored ready for use

Demand-led decarbonisation CCS and H₂ offtake

Unlocking new low-carbon growth opportunities for the automotive, chemical, shipping, glass, food, material, building material and energy sectors, including:

HyNet: A Full Chain Hydrogen Ecosystem

•

- EET Hydrogen delivering CCUS enabled H₂. First 350MW Track 1 Anchor project, 1GW T1X, FEED completed
- Grenian & other electrolytic H2 projects across region

HyNet North West

- 100km+ of dedicated hydrogen pipeline
- Designed to distribute over 30TWh of hydrogen
 - Finalising FEED & Consent underway

- Capable of storing 1300GWh of energy
- Most advanced H₂ store in the UK: Finalised FEED and consent
- Over 30 industrial and dispatchable power off-takers
- World leading demonstrations of fuel switching (Glass, FMCG, Aluminium recycling,& others)

The consortium has an aligned objective to commence commercial operations by 2030, aligned with Clean Power ambition

HyNet North West

UK Government CCS Announcement

4th October 2024

Nearly £22bn pledged for carbon capture projects

The prime minister made the announcement on a visit to to the North West with Rachel Reeves and Ed Milliband

HyNet North West

HYDROGEN CLUSTERS KEY TO NET ZERO BY 2040

(South) Cork Cluster

Energy for generations

Ainara Raton SPRI

Industrial Decarbonisation for Northern Ireland (ID-NI) Insight Event

Wednesday 19th February

Glenavon Hotel, Cookstown

Net-Zero Basque Industrial Super Cluster

NET Z E R O BASQUE

SPRI February 2024

The Net-Zero Basque Industrial SuperCluster aims to accelerate the path to net zero emissions in the Basque Country, fostering energy supply decarbonization and energy efficiency in the industrial sectors while creating market opportunities based on the scale-up of the new technologies and innovative services.

The SuperCluster aims at developing a robust, innovative industrial ecosystem where <mark>technology innovations serve as key driver of the energy transition and decarbonization.</mark>

Greater St. Louis and Illinois Regional Clean H2 Hub

2

10 11

12

13

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31 32

33

H2Houston Hub

HyNet North West Solent Cluster

Zero Carbon Humber

Brightlands Circular Space

Ordos-Envision Net Zero Industrial Park

Tianjin Economic-Technological Development Area

Indo-Pacific Net-zero Battery-Materials Consortium

Western Trade Coast (Kwinana Industries Council)

Kawasaki Carbon Neutral Industrial Complex Jababeka Net-Zero Industrial Cluster

Sanjiang New Area Industrial Park

Port of Antwerp-Bruges

Tranzero Initiative

Port of Rotterdam

Saraburi Sandbox

DKarbonation

Hunter Region

Kakinada Cluster

Mundra Cluster

Jubail Industrial City

Gopalpur Industrial Park

Kerala Green Hydrogen Valley

Mumbai Green Hydrogen Cluster

Louisiana Future Energy Cluster National Capital Hydrogen Center Ohio Clean Hydrogen Hub Alliance Cartagena Industrial Cluster Port of Açu Low Carbon Hub Andalusian Green Hydrogen Valley Canary Islands Industrial Cluster Net-Zero Basque Industrial Super Cluster

With the creation of the Net-Zero Basque Industrial SuperCluster, the strategy for the decarbonisation of industrial activity in the Basque Country joins the World Economic Forum project Transitioning Industrial Clusters towards Net-Zero.

33 Industrial Clusters from 16 Countries

* Impact key performance indicators represent CO2 e emissions, jobs and GDP/economic data reported by a limited number of signatory clusters.

Transitioning Industrial Clusters towards Net Zero - World Economic Forum (weforum.org)

Since its **presentation at COP26**, the Super Cluster's activity has been developed in four technical phases and two continuous lines of work that allow its deployment at local and international level.

The characterization is focused on energy consumption and processes with higher emissions of 5 industrial sectors

A decarbonization roadmap was prepared for each industry. The measures identified were classified according to their level of technological maturity and the WEF classification.

	Energy efficiency and circularity						
\cap	1. Smooth pulping process.	•					
X	2. Deep eutectic solvent.	500.000					
X	3. Innovative mechanical drying systems.	450.000					
X	4. Use of pulping enzymes.	400.000	17%	$\textcircled{\begin{tabular}{c} \hline \hline$			
X	5. Cellulose micro-nanofibers.	350.000		12%			
	6. Use of non-wood fibers.			16%			
\cap	7. Digitalization and AI for process control.	300.000			90/		
U	8. Use of conical refining techniques.	250.000			8%		
	9. Increased use of recycled pulp.	200.000				23%	
	10. Process heat recovery.	150.000				(
		100.000					
	Electrification and alternative fuels	50.000				7	24%
\bigcirc	11. Electrification of the process by means of heat pumps.						
$\overline{\bigcirc}$	12. Drying by electrical forces.	-	2019		2030		2050
U	13. Gasification of waste and sludge from the water treatment plant.	-	Energy efficiency and		Green hydrogen	Increase	in the energy mix
	14. Pyrolysis of by-products.	-	Electrification and		Carbon capture, use and		enewables
	15. On-site renewable electricity generation.	-	renewable fuels		storage		

6	Energy efficiency and circularity				
\bigcirc	1. Digitalization and AI for process control.	1.200			
\bigcirc	2. Ordinary Portland cement from new non-carbonated limestone fuels.				
\bigcirc	3. Use of oxycombustion.	1.000	8%		Q
	4. Optimization of fuel properties.	_		3%	ARE
\bigcirc	5. Alternative additions and their activation.	008 ^v ear			8%
		2eq/			4%
		¢t CO			
	Electrification and alternative fuels	ີ <u></u> 600			
\bigcirc	Electrolyzer for the decarbonization of calcium carbonate before clinker production in the furnace.	a roo			
\bigcirc	7. Electrification of the clinkerization process by means of electrical forces and microwave heating.	9 400 9 H 9			64%
	8. Co-processing of refuse-derived fuel (RDF).	200			
dÔÔh					
	Green hydrogen				
\bigcirc	9. Partial use of hydrogen as hydrogen in the furnace		2010	2020	3%
Ô	Carbon capture, use and storage		Energy efficiency and circularity	Creen hydrogen	2050
\bigcirc	10. Process Carbon Capture		Electrification and	Carbon capture, use and storage	
$\widetilde{\bigcirc}$	11. Indirect heating (separate stream furnace) with capture				

Measures in need of technological development

2500

2000

1500

1000

500

0

2	Energy efficiency and circularity
$\overline{)}$	1. Generation of advanced biofuels from waste.
$\overline{)}$	2. Digitalization and AI for process control.
	3. Exhaust gas heat recovery or process waste heat.
	4. Energy recovery in pressure jumps.
	5.Combined AC/DC fields to desalinate crude oil.
	6. Generation of biogas from urban waste (substitution of cogeneration gas).
	Electrification and alternative fuels
	Electrification and alternative fuels 7. Electrification of heat through heat pumps and absorption machines.
)	Electrification and alternative fuels 7. Electrification of heat through heat pumps and absorption machines. 8. Generation of synthetic fuels from green hydrogen and CO2
$\sum_{i=1}^{n}$	Electrification and alternative fuels7. Electrification of heat through heat pumps and absorption machines.8. Generation of synthetic fuels from green hydrogen and CO29.Second and third generation ethanol production
	Electrification and alternative fuels 7. Electrification of heat through heat pumps and absorption machines. 8. Generation of synthetic fuels from green hydrogen and CO2 9.Second and third generation ethanol production
\sum	Electrification and alternative fuels 7. Electrification of heat through heat pumps and absorption machines. 8. Generation of synthetic fuels from green hydrogen and CO2 9.Second and third generation ethanol production Green hydrogen
	Electrification and alternative fuels 7. Electrification of heat through heat pumps and absorption machines. 8. Generation of synthetic fuels from green hydrogen and CO2 9.Second and third generation ethanol production Green hydrogen 10. H2 production plant by electrolysis.

Carbon capture, use and storage

12. Process Carbon Capture

Energy efficiency and circularity

- 1. Generation of advanced biofuels from waste.
-) 2. Digitalization and AI for process control.
- 3. Exhaust gas heat recovery or process waste heat.
- 4. Energy recovery in pressure jumps.
- 5.Combined AC/DC fields to desalinate crude oil.
- 6. Generation of biogas from urban waste (substitution of cogeneration gas).

Electrification and alternative fuels

- 7. Electrification of heat through heat pumps and absorption machines.
- 8. Generation of synthetic fuels from green hydrogen and CO2
- 9. Second and third generation ethanol production

Green hydrogen

10. Green hydrogen consumption

In PHASE 3, the value chains of the solutions prioritised in the previous phase were characterised, by identifying Basque companies with capabilities on those areas.

Value Chain: Heat Pump

Value Chain: Energy Efficiency

Value Chain: Oxy- Combustion

Value Chain: Green Hydrogen

R+D ORGANIZATIONS						
				CIC energi GUNE		
Universidad del País Visco	Euskal Herriko Unibertsitatea			СТА		
	Mondragon Unibertsitat	Goi Eskola tea Politeknikoa	<mark>rkni</mark> ka			

The initiative is complemented by the implementation of several mechanisms to foster industrial decarbonization.

BASQUE COUNTRY	Support by GRANTS	Support by TAX DEDUCTION
Support for R&D&I	 Programa Elkartek (I+D RVCTI) – SPRI Programa Hazitek (I+D empresarial) - SPRI Fast Track Innobideak 2024 - Ayudas SPRI Horizon Europe – European Commission 	Technical Qualification Reports for Tax Effects for R&D and Innovation projects with technological advancement
Support for	 Industrial decarbonization - SPRI Energy efficiency for Industry - EVE. Strategic Projects for Economic Recovery and Transformation (PERTE) - MINTUR 	Basque List of Clean Technologies tax deduction of 30% of the equipment investment cost

SUPPORT FOR R&D. More than 50 R+D projects were launched in 2021-2024 by Basque agents and companies in the field of industrial decarbonisation, mobilising a total investment of 280 million euros.

141	Energy efficiency and circularity	Electrification and renewable fuels	Green hydrogen	Carbon capture, use and storage	1
ulp and paper	2	1			3
efining	1			3	4
ement					-
erurgy	5		5		10
undry	4				4
∻ tisector	6	2	23	2	33
	18 projects 95 M€	3 projects 23 M€	28 projects 128 M€	5 projects 32 M€	-

SUPPORT FOR INVESTMENT. R&D programs

INDUSTRIAL DECARBONIZATION PROGRAM

Budget: 20 M€ ; Proposed projects: 68; Proposed budget: 99,2 M€

Awarded grant: 17,62M€ ; Awarded projects: 58; Eligible budget: 87,15M€

SUPPORT FOR THE IMPROVEMENT OF PRODUCTION FACILITIES THAT CAUSE A REDUCTION IN GREENHOUSE GAS EMISSIONS IN THE BASQUE INDUSTRY

Energy Energy	Industries	
~84% of projects	~90% of awarded grant	
New machinery (30)	Installations	Forging
Solar panels (12)	Heat exchangers	Stamping
Components	Raw material	Steelmaking
Elec	Foundry Aluminum Chemicals	
~16% of projects	~10% de la awarded grant	Glass
Sol	lar panels	Paper
Aer	rothermal	Food&Beverages

Since its launch at COP26, Net-Zero Basque Industrial SuperCluster has boosted its international positioning by participating in several forums.

Organized by the industrial clusters in collaboration with SPRI, the Industrial Decarbonization Forum has been established as a meeting place between the supply and demand of energy efficiency and decarbonization solutions to boost opportunities for collaboration in this area.

Tool to promote, coordinate, follow, measure and disseminate the deployment of the industrial decarbonization strategy in Euskadi

Thank you!

Ainara Raton araton@spri.eus

IIII

NET Z E R O BASQUE

Global Best Practices in Industrial Decarbonisation

Q&A

Catherine McHale ESB

Ainara Raton

SPRI

Next Steps for Industrial Decarbonisation Panel Session

Gordon Best Eugene Heaney

MPA NI Invest NI

Matthew Rhodes **Catherine McHale** ESB

Camirus

